A journey from climate information to decision-making: a tale of two worlds?

^{2,1}Raül Marcos-Matamoros, ¹Marta Terrado, ¹Dragana Bojovic

¹Barcelona Supercomputing Center (BSC), Carrer de Jordi Girona 29, 08034 Barcelona, Spain ²University of Barcelona, Physics Faculty, Carrer de Martí i Franquès 1, 08028 Barcelona, Spain

Introduction

Introduction

(з)

Introduction

2009-2012

BSC Super

UNIVERSITAT DE BARCELONA

The Global Framework for Climate Services

"To enable better **management** of the **risks** of **climate variability** and **change** and adaptation to climate change, through the development and incorporation of science-based climate information and prediction into **planning**, **policy** and **practice** on the global, regional and national scale."

Five Pillars

(I) Monitoring and Observations
(II) Research Modelling and Prediction
(III) Climate Service Information System
(IV) User interface Platform

(V) Capacity Development

5

Introduction

6

Earth System Services

First round

First round

(2) Water Resource Manager:

"We cannot afford public water restrictions"

Risk aversion: High Public Institution

(1) Grape-vine grower:

"Open to new stratregies to optimise profits & expenses. I have 5ha for testing (out of 20ha)"

(3) Weather Derivatives trader:

"We have to take advantage of the predictions to maximise profit. We can hedge with other products."

Risk aversion: Low Business

Barcelona Supercomputing Center Centro Nacional de Super

We are at the end of February. Our region is a semi-arid extra-tropical area with hot and dry summers. The rainy season is spring. Each one of our users has to take a context-specific decision based on the March-April-May rain by the 1st of June. This decision, if taken in advance, could be advantageous (but also detrimental, depending on the final spring-rain outcome).

March	April	Мау	June

Barcelona Supercomp Center

(10

In this **first round** we only need that you discuss three **items**:

- What kind of predictions would you choose to look at?
 Deterministic or probabilistic? Why?
- What do you understand by 'risk aversion' in decision-making?
- What is a '**risk**'?

March	April	Мау	June

First round

First round

elona promputing ler BARCELONA

What kind of **forecast** would you look at? **Deterministic** or **probabilistic**?

First round

UNIVERSITAT... BARCELONA

First round

uting UNIVERSITATION BARCELONA

First round

DUNIVERSITAT DE BARCELONA

(15)

		Forced boundary condition problem
	Seasonal Decadal Predictions predictions	
Initial value problem		
Day Week Month	Season Year Decade	Century
Weather predictions	Seasonal to interannual predictions	Long term climate change projections

First round

BARCELONA

(16)

First round

Example for the farmer

First round

18

First round

BARCELONA

Weather forecast	Sub-	Climate prediction	15 Decadal	Climate projections
				20, 100 years
				20-100 years
				ice of scion variety and rootstock.
Ρ	ROE	BABIL	ISTI	n Cf water needs
	Adapted from	· Antonio Croop SOCD		

First round

ing UNIVERSITAT. BARCELONA

What do we understad by 'risk aversion' in decision-making?

First round

ng UNIVERSITAT... BARCELONA

When facing a **decision**, risk aversion is a **preference** for the option that maximises **certainty** and **minimises negative** outcomes (even if there are other options with higher potential gains).

First round

puting UNIVERSITATION BARCELONA

What is a '**risk**' in a decisionmaking context?

First round

ng UNIVERSITAT... Supersonnutional BARCELONA

Although the exact language depends on the **framework**, in general the 'risk' equation for any **event** can be defined as:

Risk = Likelihood x Consequences

First round

The 'likelihood' of any event can be determined through predictions, whereas the 'consequences' are an information that can vary on a decision-case basis.

Risk = Likelihood x Consequences

Second round

Second round

(2) Water Resource Manager:

"We cannot afford public water restrictions"

Risk aversion: High **Public Institution**

(1) Grape-vine grower:

"Open to new stratregies to optimise profits & expenses. I have 5ha for testing (out of 20ha)"

Risk aversion: Moderate

(3) Weather Derivatives trader:

"We have to take advantage of the predictions to maximise profit. We can hedge with other products."

Risk aversion: Low **Business**

Second round

27

We are at the end of February. Our region is a semi-arid extra-tropical area with hot and dry summers. The rainy season is spring. Each one of our users has to take a context-specific decision based on the March-April-May rain by the 1st of June. This decision, if taken in advance, it could be advantageous (but also detrimental, depending on the final spring-rain outcome).

March	April	Мау	June

Barcelona Supercomputing Center Centro Macional de Supe

UNIVERSITAT.

At the **beginning** of each **month**, each user will be told about the **probability** of having a **dry** spring. Then, the user will decide to either: **'wait and see'** or **'insure'**. Consequently, in this second round we will give you three more **information** items:

- The **probability** to have a **dry** spring (it is a **negative** outcome for each of the users).
- The cost of insuring against a dry spring (in views of the June deadline).
- The **losses** that would **incur** if there is **no insurance** and a dry spring happens.

Barcelona Supercomputing Center Center Macional de Su

UNIVERSITAT.

In this **second round** we will repeat the process for two or three years, and see what is the final remaining budget for **each** of the **groups**. After that, we will **discuss**:

• What **drove** your **decision-making**? Which were the most important **factors** that you **considered**?

March	April	Мау	June

Second round

100000 Tokens (initial budget for insuring / support losses)	1st Ma	rch	1st Ap	oril	1st May	
	Insurance Cost	Losses	Insurance Cost	Losses	Insurance Cost	Losses
Water Resource Manager	16000	25000	18500	25000	20000	25000
Grape-vine grower	7500	15000	9000	15000	10500	15000
Weather Derivatives Trader	2000	5000	3000	5000	4500	5000

Second round

Second round

UNIVERSITAT. BARCELONA

Did you find any **systematic** approach to try to **maximise** the **outcomes**?

Second round

BARCELONA

We have the **cost/loss** model approach (i.e. <u>Richardson</u> <u>D.S., 2000</u>):

$$p > \frac{C}{L}$$

Barcelona Supercomputing Center Centro Nacional de Supe

UNIVERSITAT.

Consider the situation where we do not have **any** forecast **information**. We have two **systematic** options. The **first** one is to **always** take de '**protective**' action. The mean expense per time step in that case would be:

$$E_{always} = C$$

Conversely, the **second option** would be to **never** take any **protective** action. In that cases, we would incur in **losses** each time the event **happens**. Consequently:

$$E_{never} = \frac{n}{N}L = p_{clim}L$$

Second round

UNIVERSITAT.

 $\left(35\right)$

The **optimal** systematic strategy in that **situation** would be to take the **action** if:

$$E_{always} < E_{never}$$

And, **consequently**:

$$C < p_{clim}L \rightarrow \frac{C}{L} < p_{clim}$$

Second round

50000 Tokens	1st March	1st April	1st May
(initial budget for insuring / support losses)	C/L	C/L	C/L
Water Resource Manager	64 %	72 %	80 %
Grape-vine grower	50 %	60 %	70 %
Weather Derivatives Trader	40 %	60 %	90 %

Third round

Barcelona Supercom Center

38

(2) Water Resource Manager:

"We cannot afford public water restrictions"

Risk aversion: High **Public Institution**

(1) Grape-vine grower:

"Open to new stratregies to optimise profits & expenses. I have 5ha for testing (out of 20ha)"

(3) Weather Derivatives trader:

"We have to take advantage of the predictions to maximise profit. We can hedge with other products."

Risk aversion: Low Business

We are at the end of February. Our region is a semi-arid extra-tropical area with hot and dry summers. The rainy season is spring. Each one of our users has to take a context-specific decision based on the March-April-May rain by the 1st of June. This decision, if taken in advance, it could be advantageous (but also detrimental, depending on the final spring-rain outcome).

March	April	Мау	June

Barcelona Supercomputing Center

UNIVERSITAT»

In this **third** and final **round**, we will introduce **tercile** forecasts (more complete information), so we will have **three** different scenarios for spring rain: above normal, normal and below normal. This time our focus will be on making the decision at the **beginning** of **March**.

Barcelona Supercomputi Center Center Macconal de

This time we will focus only in the 'farmer' **user**. He will have to choose from **three** different **decisions** which, at the same time, will have 9 **different** possible outcome **scenarios** (depending on the coincidence or not of the prediction and observation). And he wants to '**maximise**' its **outcome**.

The question that we want to answer here will be: according to the farmer's context, at what **probability threshold** does they have to **make** a **decision**?

Third round

(42)

Grape-vine grower

Decision Scenario 1	Payoff
A3	4880
A2	-1200
A1	-1200

Decision Scenario 2	Payoff
N3	0
N2	0
N1	0

Decision Scenario 3	Payoff
B3	-5800
B2	-3200
B1	3200

Prediction	Observation	Category
А	3	Above Normal
Ν	2	Normal
В	1	Below Normal

Barcelona Supercomputin Center

UNIVERSITAT DE BARCELONA

We can analyse, within each decision **scenario**, which are the **relationships** between hits, errors and expected outcome. A question to answer: what is the minimum **percentage** of **hits** we need to have a **positive** outcome in that **scenario**? (Vigo et al. in rev. Climate Services)

Counts	Decision Scenario 1	Payoff
D1	A3	4880
D2	A2	-1200
D3	A1	-1200

Prediction	Observation	Category
А	3	Above Normal
Ν	2	Normal
В	1	Below Normal

$$D_1 x + D_2 y + D_3 z \ge 0 \to D_1 \ge -\frac{D_2 y + D_3 z}{x}$$

 $D_1 + D_2 + D_3 = 100$

Barcelona Supercomputing Center Center Center Maccona de Sucercomputacon

If we go for the minimum: $\begin{array}{ll} D_1x + D_2y + D_3z = 0 \rightarrow D_1 = - \displaystyle\frac{D_2y + D_3z}{x} \\ & \text{In this category} \rightarrow y = z \rightarrow D_1 = - \displaystyle\frac{y}{x} \cdot \left(D_2 + D_3\right) \end{array}$

$$D_{1} = -\frac{-1200}{4880} \cdot (D_{2} + D_{3}) \simeq 0.245 \cdot (100 - D_{1})$$

$$\uparrow$$

$$D_{2} + D_{3} = 100 - D_{1}$$

$$D_1 = \frac{25}{1.25} = 20 \% \to D_1 \ge 20 \%$$

This number is **lower** than what we would obtain with **climatology**!! (33%)

Third round

Decision

Scenario 2

N3

N2

N1

Payoff	Prediction	Observation	Category
0	А	3	Above Normal
0	N	2	Normal
0	В	1	Below Normal

$$D_1 x + D_2 y + D_3 z \ge 0 \to D_1 \ge -\frac{D_2 y + D_3 z}{x}$$

 $D_1 + D_2 + D_3 = 100$

This is the BaU scenario $x = y = z = 0 \rightarrow$ no profits / losses expected in comparison to what is already applied.

Barcelona Supercomputing Center (45)

UNIVERSITAT ... BARCELONA

Third round

Decision Scenario 3	Payoff
B3	-5800
B2	-3200
B1	3200

Prediction	Observation	Category
А	3	Above Normal
Ν	2	Normal
В	1	Below Normal

BSC

46

UNIVERSITAT ... BARCELONA

$$D_1 x + D_2 y + D_3 z \ge 0 \to D_3 \ge -\frac{D_1 x + D_2 y}{z}$$

 $D_1 + D_2 + D_3 = 100$

Here we have two equations with 3 variables, so we will have a 'free' variable. Let's try to set a range of possible / likely values.

Sc Barcelona Supercomputing Center Canter Construction (47)

What is the minimum percentage of hits we need to have a positive outcome in scenario 3?

$$D_1 x + D_2 y + D_3 z \ge 0 \to D_3 \ge -\frac{D_1 x + D_2 y}{z}$$

If we go for the minimum: $D_1x + D_2y + D_3z = 0 \rightarrow D_3 = -\frac{D_1x + D_2y}{z} \rightarrow D_3 = 1.81 D_1 + D_2$

First situation $D_1 = 0$ (Best scenario)

$$D_3 = D_2$$
 $D_3 = \frac{100}{2} = 50\%$

Second situation $D_2 = 0$ (Worst scenario)

$$D_1 = \frac{D_3}{1.81}$$
 $D_3 + \frac{D_3}{1.81} = 100 \rightarrow D_3 = \frac{1.81}{2.81} \cdot 100 \simeq 64.4\%$

In a real **working** scenario, nor D_1 or D_2 will be 0. Although both cumulated $D_1 \& D_2$ are equiprobable, their relative impact is not, $\frac{x}{y} = 1.81$, and so the **weighted** mean of both **impact** scenarios gives us a more **realistic** view to what is the **probable** minimum D_3 needed to attain value for the user:

$$D_3 \ge \frac{1.81 \cdot 64 + 50}{2.81} = 59\%$$

Third round

Are we **missing** something? (In the second and third round discussions)

Third round

We are **assuming** that the forecast **probability** (computed from the ensemble) is **equivalent** to the observed **climatic** probability, p_{clim}

Can we do this?

51

... only if the forecast is **perfectly reliable**. That is, that the forecast probabilities match the **observed probabilities** (and this includes p_{clim}).

That is to say, if the event happens 60% of the time in our time-series, when the forecast system gives us a probability of 60%, this means that for every 10 times the model gave a 60% probability, 6 times the event actually happened.

Or maybe three...

Or maybe three...

The models have uncertainties!

Or maybe three...

The models have uncertainties!

Risk = Likelihood x Consequences

Or maybe three...

The models have uncertainties!

The **'trust'** on the likelihood of an event is highly dependent on the **quality** of the forecast.

Or maybe three...

UNIVERSITAT. BARCELONA

Or maybe three...

BARCELONA

Science We can give you predictions months ahead.

Or maybe three...

BARCELONA

Or maybe three...

(59)

Actually, the skill is much lower. But, statistically, it can still be valuable.

Or maybe three...

mpufacedan Universitat...

It means seasonal predictions are not that **specific** and might be **wrong** many times. In the long run, however, they could still be **worthy**, depending on the decision.

Or maybe three...

UNIVERSITAT DE BARCELONA

Or maybe three...

62

This **gap** between end-users and scientific providers involves the concepts of **quality** and **value**.

- A forecast is of **high quality** if it successfully predicts the conditions observed according to some objective criterion.
- A forecast has **value** if it helps the user to obtain some kind of benefit from the decisions it has to make.

Or maybe three...

Barcelona Supercomputing Center

Iniversitatar BARCELONA

Given a prediction, the optimal strategy changes depending on the user, specific context and decision-making

Or maybe three...

BARCELONA

65

Take Home Messages

• Any **decision-making** considers the **relationship** between the **likelihood** of an event and its **consequences**.

Likelihood x Consequences

• Need to **balance** the request for **confidence** from the users (for effective decision-making), with the intrinsic **uncertainty** of the **predictions** (that it is unavoidable at climate prediction time-scales).

Take Home Messages

- There are different strategies to maximise the performance of the predictions (bias correction, downscaling, multi-model, impact-based indicators...). However, they are highly specific, so to reach a sufficient level of 'performance' (so as to be value-effective), co-production and communication play a big role (to identify the critical features for the user).
- Adaptation and facilitation of decision-making can only be achieved if the product provided answers the particular needs of the user, and so the specific tailoring and co-development has to be performed at its 'production scale level'.

Or maybe three...

Barcelona Supercomputing Center Centor Nacional de Superco

(67)

